翻訳と辞書 |
Two-dimensional singular value decomposition : ウィキペディア英語版 | Two-dimensional singular value decomposition
Two-dimensional singular value decomposition (2DSVD) computes the low-rank approximation of a set of matrices such as 2D images or weather maps in a manner almost identical to SVD (singular value decomposition) which computes the low-rank approximation of a single matrix (or a set of 1D vectors). ==SVD==
Let matrix contains the set of 1D vectors which have been centered. In PCA/SVD, we construct covariance matrix and Gram matrix : , , and compute their eigenvectors and . Since , we have : If we retain only principal eigenvectors in , this gives low-rank approximation of .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Two-dimensional singular value decomposition」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|